Acknowledgment.—The authors wish to thank Mr. E. M. Hadsell and Miss J. N. Whiteman for the fractional distillations reported herein. The authors are also grateful to Dr. E. W. Balis and Mrs. Miriam Lennig for the carbon and hydrogen determinations, and to Mr. L. B. Bronk and Mrs. Grace Poellmitz for molecular weight and density determinations.

RESEARCH LABORATORY GENERAL ELECTRIC COMPANY SCHENECTADY, NEW YORK

Dimethylvinylethoxysilane and Methylvinyldiethoxysilane

By M. Cohen and J. R. Ladd Received November 12, 1952

A mixture of magnesium (2.63 moles) and absolute ether (800 ml.) was placed in a two-liter, three-necked, round-bottom flask equipped with a mercury-sealed stirrer, Dry Ice condenser and a gas inlet tube. A stopcock had been previously sealed to the bottom of the reaction flask. Methyl bromide was bubbled into the stirred mixture until all the magnesium had dissolved.

After excess methyl bromide had been allowed to evaporate from the solution, the methylmagnesium bromide solution was added to a stirred solution of 500 g. (2.63 moles) of vinyltriethoxysilane and 960 ml. of ether in a three-liter, three-necked, round-bottom flask equipped with a mercury-sealed stirrer and a water condenser. All outlets were protected with calcium chloride tubes. The rate of addition was such that the ether refluxed gently.

The mixture was stirred under reflux one hour, and the ether distilled off. The distillation was continued at atmospheric pressure until the temperature of the distillate reached 100°. The remainder of the silanes was separated from the residue of magnesium salts at reduced pressure (40 mm.). On fractionation of the combined silanes there was obtained 19 g. (5.6% yield) of vinyldimethylethoxysilane, b.p. 99°, n²ºn 1.3983, d²⁰, 0.790; MR calcd.² 39.8, obsd. 39.8; and 241 g. (57.4% yield) of vinylmethyldiethoxysilane, b.p. 133 to 134°, n²⁰n 1.4000, d²⁰, 0.858; MR calcd.² 45.2, obsd. 45.3.

Anal. Calcd. for $C_6H_{14}OSi$: C, 55.3; H, 10.8; Si, 21.5. Found: C, 55.4; H, 11.1; Si, 21.0. Calcd. for $C_7H_{16}O_2Si$: C, 52.5; H, 10.1; Si, 17.5. Found: C, 52.5; H, 10.2; Si, 17.2.

RESEARCH LABORATORY GENERAL ELECTRIC COMPANY SCHENECTADY, NEW YORK

Thiosemicarbazones of Thiophene Derivatives¹

By E. Campaigne, P. A. Monroe, B. Arnwine and W. L. Archer

RECEIVED JULY 31, 1952

Due to the effectiveness of p-acetaminobenzaldehyde thiosemicarbazone (Tibione)² as an antituberculous agent, a number of thiosemicarbazones have been prepared for biological testing. Among these have been a number of heterocyclic derivatives, including several of the thiophene series. 2-Thenaldehyde thiosemicarbazone has been reported to have a relatively high order of activity against the tubercle bacillus *in vitro*. 3,4 In addition, Anderson, *et al.*,4 reported *in vitro* tests on the thiosemicarbazones of 2-acetothienone, 2-propiothienone, 2-butyrothienone and 2,5-dimethyl-3-acetothienone. Of these, 2-propiothienone thiosemicarbazone afforded the best protection. A later report⁵ indicated that 2-thenaldehyde thiosemicarbazone gave weak protection to mice infected with tuberculosis.

In recent papers^{6,7} Hamre, *et al.*, reported that p-aminobenzaldehyde thiosemicarbazone caused a significant delay in death of chick embryos and mice infected with vaccinia virus. This observation was confirmed by Thompson, Price and Minton⁸ who reported that benzaldehyde thiosemicarbazone prevents multiplication of vaccinia virus in check embryonic tissue, but that substitution in the p-position of the benzene nucleus reduced virostatic activity.

In pursuing a program of virus chemotherapy, we have synthesized a number of heterocyclic thiosemicarbazones, and report here a group of thiophene derivatives. All of the carbonyl compounds used in preparing the thiosemicarbazones have been reported previously, either from these laboratories, or from other sources. The compounds prepared, their melting points and analyses are presented in the table. The biological testing data have been reported elsewhere by Dr. R. L. Thompson.⁹

TABLE I

THIOSEMICARBAZONES OF THIOPHENE DERIVATIVES					
Cmpd.				Nitro	gen, %
No.	3-Thenaldehydes	M.p., °C.4	Formula	Calcd.	Found
1	Unsubstituted	151-152	CsH7N2S2	22.78	22.70
2	2-Chloro-	196-198 dec.	C6H6N2S2C1	19.15	19.06
3	2-Bromo-	192-194 dec.	C:H:N:S:Br	15.91	15.64
4	2,5-Dichloro-	232-233 dec.	CtH5N2S2Cl2		· · · · b
	2-Thenaldehydes				
5	5-Chloro-	164-165	C6H6N8S2C1°	19.15	19.27
6	5-Bromo-	182-184	CsH6N3S2Br	15.91	15.97
7	5-Nitro-	252-255 dec.	C6H6N4O2S2	24.36	24.05^{d}
8	5-Acetamido-	231-233	C8H10N4OS2	23.15	23.05^{d}
9	5-Methyl-	160-161	C7H9N2S2	21.08	21.02^{d}
10	3-Methyl-	185-187	C7H9N3S2	21.08	21.40^{d}
11	5-t-Butyl-	182-183	C10H15N3S2	17.42	17.40
	2-Acetothienones				
12	Unsubstituted ^e	147-148	C7H9N3S2	21.08	21.12^{d}
13	5-Bromo-	200-201	C7H8N2S2Br	15.11	14.99^{d}
14	5-Methyl-	161-163	C8H11N2S2	19.73	19.72^{d}
15	4-Nitro-5-methyl-	232-235 dec.	C8H10N4O2S2	21.72	21.48^{d}
^a All melting points uncorrected. ^b Calcd.: S, 25.2;					

^a All melting points uncorrected. ^b Calcd.: S, 25.2; Cl, 28.0. Found: S, 25.2; Cl, 27.9. ^c Calcd.: S, 29.16. Found: 29.06. ^d Analyses by H. L. Clark, Urbana, Ill. ^e Previously reported by F. E. Anderson, C. J. Duca and J. V. Scudi, This Journal, 73, 4967 (1951), m.p. 148–149° uncor.

⁽¹⁾ Linde Air Products, New York, N. Y.

⁽²⁾ E. L. Warrick, This Journal, 68, 2455 (1946).

⁽¹⁾ Contribution No. 571 from the Chemistry Laboratory of Indiana University. This work was supported by a contract between the Office of Naval Research, Department of the Navy, and Indiana University.

⁽²⁾ R. Behnisch, F. Mietzsch and H. Schmidt, Am. Rev. Tuberc., 61, 1 (1950).

⁽³⁾ R. Donovick, F. Pansy, G. Stryker and J. Bernstein, J. Bact., 59, 667 (1950).

⁽⁴⁾ F. E. Anderson, C. J. Duca and J. V. Scudi, This Journal, 73, 4967 (1951).

⁽⁵⁾ C. J. Duca, M. V. Rothlauf and J. V. Scudi, Antibiotics and Chemo., 2, 16 (1952).

⁽⁶⁾ D. Hamre, J. Bernstein and R. Donovick, Proc. Soc. Exp. Biol. Med., 73, 275 (1950).

⁽⁷⁾ K. A. Brownlee and D. Hamre, J. Bact., 61, 127 (1951).

⁽⁸⁾ R. L. Thompson, M. L. Price and S. A. Minton, Jr., Proc. Soc. Exp. Biol. Med., 78, 11 (1951).

⁽⁹⁾ R. L. Thompson, S. A. Minton, Jr., and J. E. Officer, J. Immunology, in press.